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Abstract

To select an image segmentation from sets of segmentation
results, measures for ranking the segmentations relative to a
set of reference objects are needed. We review selected
vector-based measures designed to compare the results of
object-based image segmentation with sets of training objects
extracted from the image of interest. We describe and
compare area-based and location-based measures that
measure the shape similarity between segments and training
objects. By implementing the measures in two object-based
image processing software packages, we illustrate their use
in terms of automatically identifying parsimonious parame-
ter combinations from arbitrarily large sets of segmentation
results. The results show that the measures have divergent
performance in terms of the identification of parameter
combinations. Clustering of the results in measure space
narrows the search. We illustrate combination schemes for
the measures for generating rankings of segmentation
results. The ranked segmentation results are illustrated and
described.

Introduction

In object-based image processing, the first step is generally
to segment the image of interest. A wide variety of segmen-
tation results may be obtained through different parameter
combinations or different segmentation software. Prior to
classification or even to training of a suitable classifier, one
of the segmentation results must be chosen. In this paper,
we compare well defined measures that can be used in the
identification of a particular segmentation result and objects
within that segmentation that are suitable for training a
classifier. These measures are applicable in the supervised
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setting only, and the choice of a segmentation is therefore
relative to a set of predefined training objects (assumed
polygons) over the image of interest. The supervised
approach has both advantages and disadvantages. The
advantage is that accuracy is determined according to what
a human has determined to be of interest. This enables the
determination of segmentation accuracy relative to any set of
objects that are deemed important. The disadvantage is that
different humans ascribe different importance levels to
different sets of objects (Martin et al., 2001). For this reason,
we do not feel it is appropriate to describe a segmentation
result as correct or incorrect. However, it is important to
describe the segmentation in terms of how well it extracts
sets of objects of interest, a property we call goodness.

Traditional pixel-counting-based approaches to accuracy
assessment (e.g., Congalton, 1991) are insufficient for the
object-based image processing paradigm. In many segmenta-
tion-based studies, relatively little attention has been given
to the accuracy with which image segmentation extracts the
shapes of real objects (Fortin et al., 2000; Radoux and
Defourny, 2007). Under the assumption that the landscape of
interest is a finite population of objects (Bian, 2007), the
spatial information about these objects is useful in the
ultimate classification of the object (Gong and Howarth,
1990). Representation of the objects in the segmentation is
important, since this shape information will eventually be
presented to a classifier to identify a pattern used for object
labeling. The accuracy of the classification is thus depend-
ent (in part) on the accuracy of the shape information
submitted to the classifier. Measures of the segmentation
result are therefore relevant to the interpretation and
optimization of ultimate classification accuracy. The meas-
ures we compare are not measures of classification accuracy,
but are related. If a probability sample is obtained on the
population of objects (Stehman and Czaplewski, 1998;
Stehman, 1999) and is used to generate accuracy statistics
such as a confusion matrix, then the accuracy of the shapes
has been completely ignored. On the other hand, if a sample
is taken directly from the landscape (e.g., human delineated
training polygons are used) and compared to the segments,
then the areas of intersection between mapped classes and
reference classes affect the resultant accuracy. The accuracy
of the segmentation will thus directly influence the classifi-
cation accuracy, unless the classification is performed on
object primitives, a different problem discussed in the
Object Hierarchies sub-section.
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The objectives of this paper are to implement and
compare a variety of segmentation goodness measures, and
assess the efficacy of these measures for choosing from a
large set of candidate segmentations. The candidate segmen-
tations may result from different parameter combinations,
algorithms, or software. First, in methods, we give a precise
definition of each segmentation goodness measure we used,
followed by a description of the input imagery and the
segmentation software. In the next sub-section, we describe
how the measures are computed on the segmentation results,
followed by a description of a clustering method on the
segmentation results and goodness measures. The Results
section describes the values of the measures when applied
to test segmentations, followed by the Results and some
Conclusions.

Methods

Segmentation Goodness Measures

There are a large number of methods used to judge segmen-
tations (Zhang, 1996). This study is focused on the scenario
in which a set of training objects is available for a static
image, and segmentation results are to be compared to these
predefined training objects. Unlike unsupervised evaluation
of segmentation results (Levine and Nazif, 1985; Ng and Lee,
1996; Borsotti et al., 1998; Chabrier, 2006), spectral aspects
(such as homogeneity within segment or within class) of the
resultant segments are not considered and the quality of
segments is evaluated solely with respect to the shape of
training objects. In this context, a segmentation result should
contain segments that match the training objects. The
problem is, therefore, one of computing the similarity
between polygons. A large body of research exists in the
computer vision and medical imaging fields for comparing
shapes (Lee, 1974; Arkin et al., 1991, Lu and Dunham, 1993;
Antani ef al., 2004; Krolupper and Flusser, 2007). In these
studies, general forms of objects are assumed known and
segments are compared to the training objects assuming that
the segments could represent any affine transform of the
training object shapes. If invariance to affine transformations
is not necessary (when each training object is specified
individually), there are several intuitive and easy-to-compute
measures of polygon matching.

The measures of polygon matching we consider were
chosen based on criteria involving vector representation,
ease of implementation, and capacity to identify the seg-
ments that match the training shapes well. For the vector
representation criterion, we make the requirement that the
measure can be computed without using any pixel informa-
tion. One motivation for performing image segmentation is
that the pixel does not suitably represent the phenomena
under study; therefore, it makes little sense to continue to
use the pixel as a unit of analysis. Additionally, shape
metrics can be developed independent of pixel scale. The
ease of implementation criterion is simply that the metric
can be implemented according to OpenGIS standards
(http://www.opengeospatial.org/standards) without relying
on shape representations that are less accessible due to
complexity, proprietary software, or other computational
requirements. The last criterion is important for choosing
accuracy metrics that aid in the identification of segments
useful for training a classifier, rather than merely reporting
the global performance on a set of reference objects.

Various accuracy metrics are proposed by Levine and
Nazif (1982), Delves et al. (1992), Yang et al (1995), Lucieer
and Stein (2002), Prieto and Allen (2003), Zhan et al. (2005),
Moller et al. (2007), Unnikrishnan et al. (2007), and Weidner
(2008). The metrics described in Delves et al. (1992), Prieto
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and Allen (2003), and Unnikrishnan et al. (2007) made use
of pixel information or post-classification labeling and were
therefore not chosen for this re-implementation and compari-
son. Despite the prodigious use of new notation in these
studies, they are all describing similar aspects of the corre-
spondence between reference objects and segments. The first
aspect is the difference in area between reference objects and
the segments they intersect. The second is the positional
difference between reference objects and segments. Before
delving into specifics, we assume that ideally, there should
be a one-to-one correspondence between human identified
objects (reference or training objects) and segments. That is,
the difference in area and the distance between a reference
object and a segment should both be zero.

For the purposes of describing the metrics, some
notation is necessary. Let X = {x;: 1 = 1...n} be the set of n
training objects, assumed polygons, relative to which the
segmentation is to be judged. Let Y = {y;: j = 1...m/} be the
set of all segments in the segmentation of an image having
p pixels. For convenience, let area(x; N y;) = the area of the
geographic intersection of training object x; and segment y;
and area(-) be the geographic area of “.’; let Y; be a subset of
Y such that:

57,~ = {y; : area(x; N y;) # 0}.

Thus, ¥, is the set of all y; that intersect reference object
X;. For each training object x;, the following subsets of Y; exist:

Ya; = {y; : the centroid of x; is in y;}
Yb; = {y; : the centroid of y; is in x;}
Yc; = {y; : area(x; N y;) / area(y;) > 0.5}
Yd; = {y; : area(x; N y;) / area(x;) > 0.5).

The union of these subsets is the subset Y;* = Ya; U
Yb; U Yc¢; U Yd; where we assume Y;* to be the subset of
segments that are relevant to training object x;. With the
exception mentioned in the following section, we evaluate
all the measures on the Y;* set. This refinement was
designed to eliminate spurious effects caused by intersec-
tions that represent a small proportion of the reference
object or the segment. Zhan et al. (2005) have a similar
“matching” requirement, though other studies do not specify
(unambiguously) the subset of the segmentation to be used
for comparison to a given reference object.

Area-based Measures
Levine and Nazif (1982) propose a measure of area corre-
spondence. In their setup, X is a complete partition of the
input image. Due to the fact that different analysts will
partition an image differently (Martin et al., 2001), we do
not feel this is a useful setup when the reference objects
comprise a small subset of a complete partition of the image.
Yang et al. (1995), modify the Levine and Nazif (1982)
metrics to function with a proper subset of a complete
reference partition (rather than using a complete reference
segmentation of the image of interest). Yang et al. (1995)
define the following two metrics:

(area(x;) — area(x; N y;))

*

,_Y]E Yi'

underMerging; = area(x)

. (area(y;) — area(x; N y})) .
overMerging;; = area(x) Vi EYi

Observe that these metrics are ideally zero. These metrics
were summed over the ¥; € Y;, in keeping with the
procedure originally outlined by Levine and Nazif (1982).
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Lucieer and Stein (2002) define another area-based
metric, the Area Fit Index (AFI), as:

area(x;) — area(yiyqay)
AFI, = e,
area(x))

where yiy is the y; € Y, with the largest area. AFI is also
ideally zero.
Zhan et al. (2005) define SimSize as:
min(area(x;), area(y;))

*

,_y]E Yi

SimSize; =
HOIZE; max(area(x;), area(y))

and propose that the mean and standard deviation of
SimSize are area-based metrics of segmentation goodness.
The average of SimSize is in [0,1] with one being ideal.

Moller et al. (2007) describe the Relative Area (RA)
metric:

area(x; N y]-]
RAsub;, = —— v, € Y;
SuD;j area(x;) Yi !
area(x; N y;)
RAsuperj = —————, y;,€ Y,

area(y;)

Moller et al. (2007) note that RAsub is a measure of
over-segmentation and RAsuper is a measure of under-
segmentation. Observe that these metrics are continuous in
[0,1] with 1 being an ideal segmentation. These are the
only metrics we evaluated on the ¥; et

Weidner (2008) describes the quality rate (qr) as:

area(x; N y;)

qr; =1 area(x; U y)’ € Yi.
The gr is also in [0,1], and is the only goodness measure we
evaluated that takes the rate of false positive into considera-
tion, that is evaluating the amount of the “miss,” in addition
to the “hit.”

We evaluated the following modification of the RA
metrics:

area(x; N y;) .

OverSegmentation; =1— ————————, ;€ Y]
v & 1ot area(x;) Yi !
area(x; N y;) .

UnderSegmentation; =1— ———————, ;€ Y;.
nderSegmentation;; areatx) V€Y,

OverSegmentation and UnderSegmentation are in [0,1],
where OverSegmentation = 0 and UnderSegmentation = 0
define a perfect segmentation, where the segments match the
training objects exactly. The purpose of this modification of
the RA measures was merely to evaluate the metrics over the
Y* set (comparing to the original RA measures) and to
rescale the measures.

Location-based Measures

Lucieer and Stein (2002) propose a distance-based measure
of segmentation goodness called D(b). This is a planimetric
measure, based on the distance between boundary pixels in
the reference object and in the segments. To compute this
measure using vectors, we defined the modD(b); as the
mean distance between each vertex in the reference
polygon and the closest vertex in every Y* segment. In
general, a lower modD(b); should indicate segmentation
goodness.
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Zhan et al. (2005) define the following distance metric:
qLoc;; = dist(centroid(x;), centroid(y)), y; € Y;

where dist() denotes Euclidean distance in the xy plane.
Zhan et al. (2005) propose the mean and standard deviation
of gqLoc as distance-based measures of segmentation good-
ness. The range of gLoc depends on the input image, but
low values are generally preferable.

Moller et al. (2007) propose a similar metric called
Relative Position (RP). They define two versions, one of
which is identical to qLoc:

RPsub;; = gLocy, y; € }N’i

dist(centroid(x;),centroid(y;)

RPsuper;

)

dist,,

where dist,,,, = max(RPsub), y; € Y;. RPsuper is therefore

in [0,1] with lower values being preferable.

Observe that metrics indexed by i and j are properties of
the segments. When computing averages of these measures
for a given segmentation and set of reference objects, the
mean can be computed over all i and all j such that y; € Y;.
The difference is related to whether these measures
should be weighted by the training objects, larger or more
extensive training polygons being likely to interact with more
segments than smaller ones. The un-weighted version
(indexed by i only) first averages for each training object,
then averages over all the training objects. Both the weighted
and un-weighted averages can be used as indicators of
overall segmentation quality relative to the training set X.

Combined Measures

It would be nice to find a way to utilize the information
provided by all the measures by combining the scores into a
single ranking. Méller et al. (2007) describe a “ranking” that
is indicated by low values of R and high values of RA. This
ranking can be used to generate a “Comparison Index” that
can be used to identify parsimonious parameter combina-
tions. Similarly, Lucieer and Stein (2002) claim that: “A
reference object is over-segmented if the overlap is less than
100 % and AFI > 0. A reference object is under-segmented
if the overlap is 100% and AFI < 0,” where overlap has
been defined relative to the largest intersecting segment. We
defined Boolean properties of the training objects according
to this definition and counted the number of training objects
that were over- and under-segmented (countOver; and
countUnder;, respectively) at different parameter combina-
tions, with the minimum assumed to be superior.

There is a wide variety of other methods by which to
combine the measures, the most simple of which is perhaps
the root mean square (or RMS, suggested by Levine and Nazif
(1982) and Weidner (2008)):

\/ OverSegmentation}; + UnderSegmentation;
D, = .
1] 2

This index D should be interpreted as the “closeness” to an
ideal segmentation result, in relation to a predefined
training set. In this context, D is in [0, 1]. RMS measures are
appropriate in this circumstance, but many of the metrics
do not have well defined ranges, or ranges that differ
substantially from one another. In these cases, some
normalization or standardization is required prior to
combining them for the purposes of sorting parameter
combinations by goodness. In addition to Dy, for each
parameter set, we evaluated the following combination
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schemes on various subsets of the measures, subsets
inspired by the articles in which the measures were
proposed (measures indexed by i and j are weighted,
measures indexed by i are un-weighted and measures
prefixed by the n subscript are normalized to [0,1], by
dividing by the maximum):

\/ OverSegmentation? + UnderSegmentation?
D =
! 2

Jﬂ | AFL1% + ;modDb?

LSI' =
2
OverUnder; = E(countOveri + countUnder;)
mergeSum; = » (overMerging; + underMerging,).

The M combinations are inspired by Moller et al.
(2007). The base measures that make up the combined
measures are normalized and/or the scale reversed in
order make the measures on a [0,1] scale with 0 optimal:

\/(1 — RAsub;)*+ (1 — RAsuper;)? + ,RPsub} + ,RPsuper;;
M= .
4

i

\/(1 — RAsub;)*+ (1 — RAsuper;)? + ,RPsub? + ,RPsuper?
= 2 )

The ZH combinations are inspired by Zhan et al. (2005).
As with the M combinations, the base measures have been
normalized and/or subtracted from 1 as necessary.

\/(1 — SimSizeij)2 +nSD_SimSize?j +nqLoc§1» +,,SD_qLoc§j
4

(1— SimSize;)* + ,SD_SimSize? + ,qLoc? + ,SD_qLoc?
ZH1, = .

(1- SimSizei]-]2 + »qLoc}
ZH2; = ,

(1 — SimSize;)* + ,qLoc?
ZHZI = 9 .

Additionally, all the measures were normalized to [0,1]
(with 0 optimal) as necessary, then the RMS computed. This
aggregate measure is denoted Combo. Both weighted and un-
weighted gqr measures were included independently. Note
that, with the exception of Combo, the combination schemes
presented here are based on authorship. This setup was
envisioned as a sort of proposed measure shootout.

Table 1 summarizes each measure by its practical range
and optimum. We determined the practical range according
to two degenerative scenarios. The first is total over-segmen-
tation, where there is one training object that corresponds to

TABLE 1. SUMMARY OF THE MEASURES DESCRIBED IN THE METHODS SECTION. THE MINIMA AND MAXIMA ARE BASED ON TOTAL
OVER-SEGMENTATION AND TOTAL UNDER-SEGMENTATION FOR AN IMAGE OF P PIXELS AND A TRAINING SET OF M POLYGONS.

Measure Minimum Maximum Optimum

underMerging 0 p-1 0. The minimum indicates a perfect match
or overMerging. Summed over training objects.

overMerging 0 plp-1) 0. The minimum indicates a perfect match or
underMerging. Summed over training objects.

AFI 1-p (p-1)/p 0. AFI<O0 indicates undersegmentation and AFI>0
is oversegmentation.

SimSize 1/p 1 1.0 Approaches 1/p for underSegmentation and
overSegmentation

RAsub 1/p 1 1.0 Approaches 1/p for overSegmentation.

RAsuper 1/p 1 1.0 Approaches 1/p for underSegmentation.

QualityRate 1/p 1 1.0 Approaches 1/p for underSegmentation and
overSegmentation

overSegmentation 0 (p-1)/p 0. Minimum indicates a perfect match or
underSegmentation.

underSegmentation 0 (p-1)/p 0. Minimum indicates a perfect match or
overSegmentation.

modDb 0 O(P) 0. Increasing distance indicates worse matching.
Arbitrarily large with increasing resolution.

qLoc 0 mean distance to nadir 0. Increasing distance indicates worse matching

RPsub 0 mean distance to nadir 0. Increasing distance indicates worse matching

RPsuper 0 1 0. Increasing distance indicates worse matching

D 0 (p—l)/p[Z”Z) 0. Minimum indicates a perfect match.

LS 0 O(P) 0. Minimum indicates a perfect match. Can get
arbitrarily large with increasing resolution.

OverUnder 0 2m 0. Minimum indicates a perfect match.

mergeSum 0 p*1 0. Minimum indicates a perfect match.

M 0 1 0. Minimum indicates a perfect match.

ZH1 0 1 0. Minimum indicates a perfect match.

ZH2 0 1 0. Minimum indicates a perfect match.

Combo 0 1 0. Minimum indicates a perfect match.
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the image area and each pixel is a segment. The second is
total under-segmentation, where each pixel is a training
object, and there is a single segment that corresponds to the
image area.

Imagery and Segmentation Software

We used the measures to evaluate sets of segmentation
results from an urban image. The imagery we used is a
3-band (RGB) aerial image of a portion of the City of San
Francisco, California. The image was re-sampled (using
nearest neighbor) from slightly rectangular pixels to have a
resolution of approximately 0.17 meters, square. The input
image is shown in Plate 1.

We obtained segmentations from two different software
packages: eCognition® (http://www.definiens.com) and
BerkeleylmageSeg (BIS; http:/www.imageseg.com). These
programs use a region merging technique to obtain a com-
plete spatial partition of the input image pixels. Both BIS
and eCognition® are developed based on the region merging
algorithms described in Benz et al. (2004). Differences in
results between BIs and eCognition® are likely due to
propriety implementation details that are impossible to
evaluate from closed source software. Following is a brief
summary of the region merging technique.

Initially, every pixel is an object and merging proceeds
iteratively. For any object, consider its contiguous neigh-
bors. Let any pair of contiguous objects be described as
object a, object b, and their possible union ab as the
merged object.

Let the difference in spectral heterogeneity h,, for the
merged object by defined as:

Ah, = 21: Wiy ap — (N0 4 T 1,07 p)),

0 <w; =1,Xw; =1 are the weights for i = 0, 1...Iimage
bands, n denotes the area of an object in pixels, and oj is
the standard deviation in band i for an object.

Let the difference of compactness and smoothness, Ah,
and Ah,, respectively, of the objects be defined as:

AL = nablab nala nblb
‘ VIl VI, \/ITb
Ah, = Toblao _ Tala _ 1ely

bab ba bb

where ] is object perimeter length, and b is the perimeter of
the object’s bounding box length.
Let the difference in shape heterogeneity be defined as:

Ah; = w,Ah, + w,Ah,,

0 < w,w, = 1,w,+ w, = 1, and w, is the user selected
compactness parameter (w; is the smoothness parameter).
Define the scale rate r as:

r = wyAh,+ wAh,

0 < w,w, = 1,w,+ w, = 1, and w; is the user selected shape
parameter.

The program will iterate through the objects, merging
contiguous objects if the estimated scale rate r is below

Hand Digitized Polygons
I (ctcrs

the base image for Plate 2.

122°25'30"

Plate 1. The input image overlaid by the 203 hand digitized training shapes of cars,
trees, and buildings. The inset shows the location of the image relative to the City of
San Francisco; the extent of the subset image shown in Plate 1 appears in red and is

San Francisco
B&y

w
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t =0,1,2...T. The user selected scale threshold parameter
T determines the number of iterations through the objects or
the number of merging cycles. So the higher the scale, the
more merging will occur and the larger the objects in the
segmentation will be.

Computation of Measures
The software packages perform segmentation and export
the results as polygons in the ESRI shapefile format. In
total, 150 parameter combinations were examined for scale
threshold, shape, and compactness according to {10, 20,
30, 40, 50, 60} X {0.1, 0.3, 0.5, 0.7, 0.9} X {0.1, 0.3, 0.5,
0.7, 0.9}, respectively. For training sets, we digitized
119 vehicles (cars and trucks) as simple rectangles, 48 tree
crowns, and 36 building rooftops for a total of 203 training
shapes. The digitized training shapes are shown in Plate 1.
Using the resultant shapefile from each parameter
combination, we implemented the measures described
above in the Java environment using open source libraries
JTs (Java Topology Suite; http://www.vividsolutions.com/jts/
jtshome.htm) and GeoTools (http://geotools.codehaus.org/).
We computed the various goodness measures described
above for each parameter combination relative to each
training object set (vehicles, trees, buildings) and the
merged training objects (union of vehicles, trees, buildings).

Clustering

An alternative to mathematically combining the measures
(as previously described) is to search for clusters in the
measure space (Moller et al., 2007). Under this set up, a
segmentation (resulting from a specific parameter combina-
tion) is generated and goodness measures computed in
relation to some set of training objects. That segmentation
represents a point in the space of the goodness measures.
We expected segmentations that optimize one or more of the
goodness measures to be clustered in this space.

We tested clustering using the open source data mining
software Weka’s (http://www.cs.waikato.ac.nz/ml/weka/)
expectation maximization algorithm (Witten and Frank, 2005).
Only the base measures were used as features in the cluster-
ing, each instance representing a segmentation (parameter
combination). Once cluster membership was assigned to each
segmentation, we examined each cluster to see how many
segmentations it contained that optimized one of the base
measures or one of the combined measures. The complete
process is diagrammed in Figure 1.

Whichever cluster has the most number of segmenta-
tions that are optimal relative to one or more of the com-
bined measures is a “winning” cluster. Ideally, a winning
cluster is obvious (i.e., there is not a tie with other clusters
for the most number of optimized measures), and all the
measures are optimized by the same parameter combination.
Alternatively, the measures may be optimized by disparate
parameter combinations, but the winning cluster may
indicate useful patterns in the parameters (such as nesting at
different scales). This method has the nice property of being
able to identify the mean of scale, shape, and compactness
in winning clusters.

Results

Counter to what we expected, and perhaps in reflection of
an unjustified optimism, a simple summary of the results
is that the different measures can indicate wildly different
parameter combinations as “best.” However, this should
not be surprising, since, as Weidner (2008) noted, “All
quantities evaluate just one aspect of segmentation proper-
ties at once.” This observation is clearly illustrated in the
results, shown in Tables 2 and 3, according to BIS and
eCognition® segmentations, respectively. Tables 2 and 3
show the optimal values for each measure, the parameter
combination (segmentation) that produced the optimal

I
SEGMENTATION
Generate a large set of
results from different
parameter combinations.

OVERLAY IRAIN
Compute goodness metrics Create reference
polygons

GOODNESS MEASURES
for each segmentation.

/\

Compute combined
measures

Cluster the base
measures

For each cluster, determine the
number of segmentations that
optimize one or more of the
combined measures.

Examine winning
clusters to select best
segmentation

Figure 1. Flowchart of the segmentation selection process.
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TaBLE 2. BIS GOODNESS MEASURES FOR (A) MERGED TRAINING OBJECTS, (B) CARS, (C) BUILDINGS, AND (D) TREES ARRANGED BY
CLUSTER MEMBERSHIP (COLUMN 1). COLUMNS 2 AND 3 SHOW THE MEASURE AND THE OPTIMAL VALUE, RESPECTIVELY, FOR
SEGMENTATION CREATED WITH THE PARAMETERS IN COLUMNS 3, 4, AND 5 (ABBREVIATED BY SC. = SCALE, SH. = SHAPE,

CPT. = COMPACTNESS). THE CLUSTERS CONTAINING THE LARGEST NUMBER OF MEASURES WITH OPTIMAL VALUES ARE
IDENTIFIED BY A “00" BOXED OUTLINE

a. Merged b. Cars
clus. measure value sC. sh. cpt. clus. measure value sC. sh.  cpt.
0 Dy 0.437 40 0.9 0.1 0 RA; 0.459 60 0.9 0.1
0 ModDb 4.501 60 0.9 0.1 0 SimSizeSD; 0.022 60 0.9 0.1
0 OverUnder 64 50 0.9 0.5 2 Dy 0.418 30 0.9 0.1
0 SimSize; 0.167 40 0.9 0.1 2 OverUnder 33 40 0.9 0.5
0 SimSizeSD; 0.041 60 0.9 0.1 3 D; 0.370 60 0.5 0.1
0 QLocSD; 3.266 60 0.9 0.7 3 ModDb 2.311 60 0.5 0.3
0 QlocSDj; 14.413 50 0.9 0.7 3 SimSize; 0.519 20 0.9 0.1
1 abs(AFI) 0.008 20 0.3 0.5 3 SimSize; 0.208 60 0.5 0.5
2 D; 0.378 30 0.9 0.1 3 qr; 0.596 60 0.1 0.3
2 RP;; 5.337 50 0.7 0.9 3 Combo 0.405 30 0.9 0.5
2 QLDq,-]- 7.540 50 0.7 0.9 4 abs(AFI) 0.004 10 0.9 0.3
2 qr; 0.623 30 0.9 0.1 4 RP; 2.804 20 0.7 0.3
2 qr 0.318 60 0.7 0.5 4 Qlog; 3.904 20 0.7 0.3
2 ZH2; 0.281 50 0.7 0.9 4 f 0.412 20 0.5 0.9
3 i 0.449 50 0.5 0.7 5 RA; 0.451 10 0.1 0.1
3 Combo 0.440 30 0.9 0.5 5 SimSizeSDj; 0.080 10 0.1 0.7
4 RP; 5.921 20 0.7 0.7 5 LS 0.004 10 0.1 0.7
4 Qlog; 8.346 20 0.7 0.7 5 ZH1; 0.219 10 0.1 0.7
4 M; 0.428 30 0.1 0.9 5 ZH1;; 0.142 10 0.1 0.7
5 RA; 0.456 10 0.1 0.7 5 ZH2; 0.083 10 0.1 0.3
5 RA; 0.490 10 0.1 0.7 5 ZH2; 0.080 10 0.1 0.9
5 SimSizeSDj; 0.054 10 0.1 0.7 6 i 1.453 20 0.9 0.7
5 LS 0.007 10 0.1 0.3 6 QLoq,-,- 2.030 20 0.9 0.7
5 ZH1; 0.299 10 0.1 0.7 6 QLocSD; 1.749 20 0.9 0.7
5 ZH1; 0.430 10 0.1 0.1 6 QLOCSD,-]- 3.514 20 0.9 0.7
5 ZH2; 0.153 10 0.1 0.3 6 mergeSum 332.340 20 0.9 0.7
7 SimSize; 0.482 20 0.9 0.1 6 qri; 0.307 20 0.9 0.7
7 mergeSum  973.763 30 0.7 0.9 6 M;; 0.345 20 0.9 0.7

c. Buildings d. Trees
clus. measure value SC. sh. cpt. clus. measure value sc. sh. cpt.
0 D; 0.336 60 0.9 0.1 0 ModDb 1.629 50 0.7 0.7
0 D 0.410 60 0.9 0.1 0 OverUnder 4 60 0.3 0.5
0 ModDb 9.239 60 0.9 0.1 2 SimSizeSD; 0.000 60 0.9 0.1
0 OverUnder 9 60 0.9 0.1 2 QLocSD; 0.000 60 0.9 0.1
0 RP; 12.602 50 0.9 0.1 3 M; 0.403 30 0.1 0.9
0 RP;; 6.006 60 0.9 0.1 4 D; 0.314 30 0.9 0.9
0 SimSize; 0.575 60 0.9 0.1 4 RP; 4.052 20 0.9 0.3
0 SimSize;; 0.197 60 0.9 0.1 4 RP;; 1.384 30 0.7 0.7
0 Qlog; 17.807 50 0.9 0.1 4 SimSize; 0.613 30 0.9 0.9
0 QLog; 8.489 60 09 0.1 4 SimSize; 0.172 30 09 09
0 QLocSD; 7.402 60 0.9 0.7 4 Qlog; 5.666 20 0.9 0.3
0 QLocSD;  16.510 60 09 05 4 QLog; 1946 30 0.7 0.7
0 mergeSum 74.096 60 0.9 0.1 4 QLOCSD,-/- 4.315 30 0.7 0.7
0 qr; 0.523 60 0.9 0.1 4 mergeSum 71.068 30 0.7 0.7
0 qr; 0.247 60 0.9 0.1 4 M;; 0.292 30 0.7 0.7
0 M;; 0.399 60 0.9 0.1 4 ZH2;; 0.146 30 0.7 0.7
0 ZH2j 0.356 60 0.9 0.1 4 Combo 0.406 20 0.9 0.7
2 abs(AFI) 0.004 50 09 07 5 abs(AFI) 0.015 30 0.3 0.5
2 M; 0.574 30 0.9 0.1 6 D; 0.339 30 0.9 0.3
2 ZH1; 0.589 50 0.9 0.7 6 qr; 0.523 30 0.9 0.3
2 ZH2; 0.580 30 0.9 0.1 6 qri 0.150 40 0.7 0.1
2 Combo 0.535 50 0.9 0.7 7 RA; 0.430 10 0.1 0.1
4 RA; 0.535 10 09 07 7 RA; 0439 10 01 01
4 RA; 0.536 10 0.9 0.7 7 SimSizeSD,-]- 0.065 10 0.1 0.7
4 SimSizeSD; 0.023 10 0.9 0.7 7 LS 0.023 10 0.1 0.9
4 ZH1; 0.616 10 0.9 0.9 7 ZH1; 0.244 10 0.1 0.3
5 SimSizeSDj; 0.020 10 0.1 0.7 7 ZH1;; 0.298 10 0.1 0.3
6 LS 0.202 50 0.1 0.1 7 ZH2; 0.164 10 0.1 0.5
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value, and the cluster membership of the parameter
combination. The results have been sorted by cluster
membership, with the clusters that contain a majority or
plurality of optimal segmentations highlighted. These
clusters are useful for noticing the association of particular
measures with each other, and also for observing the
relationship between segmentation parameters within
clusters. In terms of the former (the relationship between
measures), it should be noticeable in either the BIS or the
eCognition® results that some measures are more fre-
quently represented in the winning cluster (in the case of
the merged objects and the cars, for BIS, there was a tie
between two clusters for the win). We do not feel it
reasonable to make any further observation, aside from
this qualitative statement, because it would be unfair to
the other measures, which may perform better under other
circumstances.

As for the relationship between parameter combina-
tions, the most notable feature of the results is the fre-
quent nesting structure of the parameters within the
winning clusters. This result suggests that the measures
are converging to parameter sets that are suitable for
extracting the objects of interest. For example, in relation
to the merged training shapes, the measures identify
parameter sets (40, 0.9, 0.1) and (60, 0.9, 0.1) for BIS, and
(50, 0.3, 0.9) and (60, 0.3, 0.9) for eCognition®. While the
search we evaluate here is fairly coarse, this result indi-
cates particular combinations of shape and compactness
that should be subjected to a finer search within ranges of
the scale parameter.

Some representative results are displayed in Plate 2.
These results were selected from the parameters identified
in reference to the cars, trees, and buildings training
shapes. They therefore represent some of the best results
for extracting these objects from the image. We say some
because, despite our best efforts, there is still some
subjectivity left in the process. However, we have chosen
from the winning clusters (as shown in Tables 2 and 3)
the most representative parameter combinations, meaning
most commonly occurring or one of the most commonly
occurring. The clustering technique enabled the choice
between several segmentations from the winning cluster(s),
rather than having to choose from the set of all 150
segmentation results.

Discussion

Classification Accuracy

This paper addresses the first step of object-based image
processing which is choosing from a set of candidate
segmentations. Using measures such as those we describe
is helpful to minimize subjectivity in this choice. Perhaps
because of the hitherto subjective nature of this process,
the accuracy with which a segmentation represents actual
objects in imagery has been largely under-reported in
studies that employ object-based image analysis. We claim
that the examination of segmentation results relative to
training objects is a critical step in this analysis. The first
reason is that the spectral and shape characteristics pre-
sented to a classifier should be generated from segments
that match the objects of interest. If they do not, resultant
classification accuracy could be affected. The second
reason is to report the accuracy with which the segmenta-
tion has captured the objects. It is essential to be able to
determine whether inaccuracy in classification is due to a
poor classifier or a poor segmentation (or both). Reporting
classification accuracy without reporting shape accuracy is
ambiguous in this regard.
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Parameter Selection

As our results indicate, the complete automation of the
parameter selection process is possible, though still subject
to some expert judgment, since a measure or set of measures
must be chosen and will influence the ultimate selection. In
addition, the analyst (or analysts) must still subjectively
choose and delineate training objects. However, the process
we describe makes it possible to sort a very large collection
of segmentation results, and visually interpret a small subset
that represents the best outcomes. This type of exercise
would be very, very tedious to the point of being infeasible
for a human observer. We feel a quantitative approach is
greatly needed for the remote sensing community to more
objectively choose segmentation results.

The problem of finding an optimal configuration of
parameter settings has been addressed by Holt et al. (in
press) and Moller et al. (2007). In our approach, we have
conceptualized the issue of finding a parameter combina-
tion as more of a search problem than an optimization
problem. As such, we would recommend a “grid search”
as described by Hsu et al. (2008) where a coarse search is
initially performed and a fine search is subsequently
performed on the parameter combinations identified in
winning clusters. Viewed in this way, the measures we
describe are basically performance indices that are used to
rank or sort a set of results (analogous to a cross-validated
accuracy). Our results indicate that, regardless of the
measure used, it will probably differ from some other
measure published in the literature. For this reason, we
recommend the implementation of as many measures as
feasible, and the ultimate choice of segmentation justified
relative to one or more of these measures.

Choice of Training Objects

Obviously, the choice of training objects influences the
results. Different observers will likely choose different
objects and manually segment them differently (Martin

et al., 2001). It is worth mentioning that some measures
take this human variability into consideration explicitly
(Unnikrishnan et al., 2007; Martin et al., 2004). We suggest
that methods and measures we describe here are equally
applicable to multiple observers. This is a strength of the
process since segmentation results can be ranked relative
to whatever set of objects is considered most important

to whichever observer is most important. For example,
consider the natural resource application of using image
segmentation to partition an image into vegetation types.
A wide variety of such vegetation maps are possible from
different photo-interpreters or typing rules. The goodness
measures can be used to identify desirable segmentation
results by comparing the segmentations to vegetation maps
resulting from different photo-interpretations or different
typing rules.

Object Hierarchies

The evaluation of segmentation relative to a set of training
objects is simply a quantitative measure of the goodness of
polygon matching. It does not necessarily imply a good
classification result. This is particularly true in the event
that a classification of primitives can be used as a prelimi-
nary step to the ultimate assembly of objects (see, for
instance, Pichel et al., 2006). For example, consider an
evaluation of segmentation results relative to the set of
cars. The individual car objects could be extracted by first
classifying car parts such as windshield, hood, roof, etc.,
then assembling these parts into complete cars through
dissolve operations or other adjacency rules. The same
approach could be taken for ecosystems composed of
objects such as trees, shrubs, meadows, and so forth. The
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Plate 2. Some illustrations of the segmentation results. Each example was chosen based on frequently
occurring parameter combinations in the best cluster for each object type. Each image is identified by

the software used to generate it, the reference object set and the parameter combination, respectively.
The location of this subset is shown in Plate 1.

method described here could easily be applied to such a
scenario through the provision of training sets for the
individual parts (windshield, roof, etc.), then evaluating
the goodness of match between the segmentation and the
supplied primitives. These hierarchical relationships
between objects at different spatial scales could be more
easily exploited using the measures we propose. With any
software that produces nested segmentations at different
scales (as both BIS and eCognition® do), the measures
could be harnessed to compare predefined object primi-
tives to a wide variety of segmentations at different scales.
In this way, optimal scales for analysis could be identified

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

by comparing the training objects to different levels of the
hierarchy.

Conclusions

We have presented and demonstrated measures that facilitate
the identification of optimal segmentation results relative to a
training set. We propose that these measures are not only
useful for the selection of segmentations from an array of
choices, but also have utility in reporting the overall accuracy
of segmentation, again relative to the set of supplied training
objects. This setup is useful in the case where predefined
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TABLE 3.

ECOGNITION® GOODNESS MEASURES FOR (A) MERGED TRAINING OBJECTS, (B) CARS, (C) BUILDINGS, AND (D) TREES

ARRANGED BY CLUSTER MEMBERSHIP (COLUMN 1). COLUMNS 2 AND 3 SHOW THE MEASURE AND THE OPTIMAL VALUE, RESPECTIVELY,
FOR SEGMENTATION CREATED WITH THE PARAMETERS IN COLUMNS 3, 4, AND 5 (ABBREVIATED BY SC. = SCALE, SH. = SHAPE,

CPT. = COMPACTNESS). THE CLUSTERS CONTAINING THE LARGEST NUMBER OF MEASURES WITH OPTIMAL VALUES ARE

IDENTIFIED BY A “00" BOXED OUTLINE

a. Merged b. Cars

clus. measure value sc. sh. cpt. clus. measure value sc. sh. cpt.
0 D; 0.405 60 0.3 0.9 0 M; 0.400 20 0.7 0.5
0 ModDb 5.214 60 0.3 0.1 0 ZH2; 0.132 10 0.1 0.9
0 RP;; 4.392 60 0.3 0.5 1 i 0 30 0.1 0.3
0 QLDq,-i 6.204 60 0.3 0.5 1 ModDb 1.569 60 0.3 0.1
0 mergeSum 481.226 50 0.3 0.9 1 OverUnder 26.000 40 0.1 0.9
0 qri; 0.249 60 0.3 0.9 1 RP; 0.930 30 0.1 0.7
0 i 0.412 50 03 09 1 QLog; 1.288 30 01 07
0 ZH2;; 0.426 60 0.3 0.5 1 qr 0.164 30 0.1 0.7
0 Combo 0.476 50 0.3 0.9 1 ZH1; 0.227 40 0.1 0.9
1 D; 0.311 40 0.3 0.5 1 Combo 0.399 30 0.1 0.9
1 RP, 5.119 50 05 09 2 RA; 0.475 60 01 03
1 SimSize; 0.598 50 0.5 0.9 3 abs(AFI) 0.012 30 0.3 0.3
1 Qlog; 7.189 50 05 09 3 RP, 2.176 30 03 07
1 qr; 0.515 40 0.3 0.5 3 Qlog; 2.959 30 0.3 0.5
2 abs(AFI) 0 40 0.9 0.5 3 QLocSD; 2.960 20 0.1 0.7
3 SimSize;; 0.154 60 0.9 0.7 3 mergeSum 152.968 20 0.1 0.7
6 OverUnder 71.000 50 0.1 0.7 3 M;; 0.272 20 0.1 0.7
6 SimSizeSD; 0.019 60 0.1 0.5 4 ; 0.284 40 0.3 0.5
6 QLocSD; 1.335 60 0.1 0.5 4 SimSize; 0.655 40 03 05
6 QLocSD;; 12.055 60 0.1 0.5 4 SimSize; 0.241 50 0.5 0.9
6 ZH1; 0.386 50 0.1 0.5 4 qr; 0.472 40 0.3 0.5
6 ZH1; 0.633 60 0.1 0.5 5 SimSizeSD; 0.000 60 0.1 0.1
7 RA; 0.450 10 09 0.5 5 QLocSD; 0.000 60 01 01
7 RA; 0.483 10 0.9 0.7 9 ij 0.439 10 0.9 0.7
7 SimSizeSDj; 0.044 10 0.7 0.9 9 SimSizeSDj; 0.064 10 0.7 0.9
7 ZH2; 0.299 10 0.5 0.1 9 LS 0.025 10 0.9 0.7
9 M; 0.446 30 0.9 0.5 9 ZH1; 0.197 10 0.7 0.5
10 LS 0.042 10 0.3 0.9 9 ZH2; 0.134 10 0.9 0.1

c. Buildings d. Trees

clus. measure value sc. sh. cpt. clus. measure value  sc. sh.  cpt.
0 Combo 0.555 50 0.1 0.5 0 abs (AF1) 0.002 40 0.9 0.3
2 M; 0.587 60 0.9 0.1 1 RA; 0.418 10 0.9 0.5
2 ZH2; 0.635 60 0.9 0.1 1 RAj 0.428 10 0.9 0.9
4 ZH1;; 0.633 30 0.1 0.7 1 SimSizeSDj; 0.048 10 0.9 0.3
6 D; 0.370 60 0.1 0.5 2 ZH1; 0.415 50 0.3 0.9
6 Dj; 0.462 60 0.1 0.5 3 OverUnder 4 60 0.1 0.1
6 ModDb 16.965 60 0.1 0.1 3 SimSizeSD; 0.000 60 0.1 0.5
6 abs(AF1) 0.080 60 0.1 0.5 3 QLocSD; 0.070 60 0.1 0.3
6 OverUnder 24.000 60 0.1 0.5 5 ZH2; 0.527 20 0.9 0.3
6 RP; 14.769 60 0.1 0.5 6 M; 0.481 30 0.7 0.5
6 RP; 6.259 60 0.1 0.5 7 D; 0.204 40 0.5 0.9
6 SimSize; 0.502 60 0.1 0.3 7 Dj; 0.236 50 0.5 0.9
6 SimSizeij 0 60 0.1 0.1 7 ModDb 1.930 60 0.7 0.9
6 Qlog; 20.870 60 0.1 0.5 7 RP; 2.389 40 0.5 0.9
6 QLoqij 8.848 60 0.1 0.5 7 RP; 0.674 50 0.5 0.5
6 QLocSD; 7.132 60 0.1 0.5 7 SimSize; 0.766 40 0.5 0.9
6 QLOCSDU 15.113 60 0.1 0.3 7 Qlog; 3.248 40 0.5 0.9
6 mergeSum 72.669 60 0.1 0.3 7 QLog; 0.935 50 0.5 0.5
6 qr; 0.582 60 0.1 0.5 7 QLOCSDU- 2.750 50 0.5 0.9
6 qri; 0.229 60 0.1 0.5 7 mergeSum 29.534 50 0.5 0.5
6 LS 0.375 60 0.1 0.9 7 qr; 0.338 40 0.5 0.9
6 M;; 0.377 60 0.1 0.5 7 qri; 0.080 50 0.5 0.5
6 ZH1; 0.595 60 0.1 0.5 7 M;; 0.253 40 0.5 0.5
6 ZH2; 0.349 60 0.1 0.5 7 ZH1j 0.543 50 0.5 0.9
7 RA; 0.534 10 0.1 0.9 7 ZH2j; 0.216 50 0.5 0.5
7 RA; 0.534 10 0.1 0.9 7 Combo 0.446 40 0.3 0.7
7 SimSizeSD; 0.010 10 0.1 0.9 8 SimSizeij 0.183 60 0.9 0.5
7 SimSizeSDj; 0.010 10 0.1 0.9 9 LS 0.157 10 0.3 0.7
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objects are to be located and extracted (through a classifica-
tion algorithm) from an image of interest. The objective
selection of a segmentation result (i.e., not based on “expert
opinion,” “visual interpretation,” and the like) necessitates
such an approach. Additionally, the variety of segmentation
methods means that inter-comparisons such as that presented
here could benefit from a set of quantitative, well defined
measures that communicate the effectiveness of the software
to find objects of interest. This paper presents an approach
that provides an initial basis for the consistent comparison of
segmentations resulting from varying parameters and algo-
rithms. We are hopeful that segmentation software will apply
such an approach to assist users in objective parameter
selection. Alternatively, there is a need to establish a library
of code that can be used by the community at large for
judging segmentation results. To this end, we are happy to
distribute our test code to any and all interested parties.
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